185 research outputs found

    A role for the RabA4b effector protein PI-4Kβ1 in polarized expansion of root hair cells in Arabidopsis thaliana

    Get PDF
    The RabA4b GTPase labels a novel, trans-Golgi network compartment displaying a developmentally regulated polar distribution in growing Arabidopsis thaliana root hair cells. GTP bound RabA4b selectively recruits the plant phosphatidylinositol 4-OH kinase, PI-4Kβ1, but not members of other PI-4K families. PI-4Kβ1 colocalizes with RabA4b on tip-localized membranes in growing root hairs, and mutant plants in which both the PI-4Kβ1 and -4Kβ2 genes are disrupted display aberrant root hair morphologies. PI-4Kβ1 interacts with RabA4b through a novel homology domain, specific to eukaryotic type IIIβ PI-4Ks, and PI-4Kβ1 also interacts with a Ca2+ sensor, AtCBL1, through its NH2 terminus. We propose that RabA4b recruitment of PI-4Kβ1 results in Ca2+-dependent generation of PI-4P on this compartment, providing a link between Ca2+ and PI-4,5P2–dependent signals during the polarized secretion of cell wall components in tip-growing root hair cells

    Distribution of endogenous NO regulates early gravitropic response and PIN2 localization in arabidopsis roots

    Get PDF
    High-resolution and automated image analysis of individual roots demonstrated that endogenous nitric oxide (NO) contribute significantly to gravitropism of Arabidopsis roots. Lowering of endogenous NO concentrations strongly reduced and even reversed gravitropism, resulting in upward bending, without affecting root growth rate. Notably, the asymmetric accumulation of NOalong the upper and lower sides of roots correlated with a positive gravitropic response. Detection of NO by the specific DAF-FM DA fluorescent probe revealed that NO was higher at the lower side of horizontally-oriented roots returning to initial values 2h after the onset of gravistimulation. We demonstrate that NO promotes plasma membrane re-localization of PIN2 in epidermal cells, which is required during the early root gravitropic response. The dynamic and asymmetric localization of both auxin and NO is critical to regulate auxin polar transport during gravitropism. Our results collectively suggest that, although auxin and NO crosstalk occurs at different levels of regulation, they converge in the regulation of PIN2 membrane trafficking in gravistimulated roots, supporting the notion that a temporally and spatially coordinated network of signal molecules could participate in the early phases of auxin polar transport during gravitropism.Fil: Paris, Ramiro. Universidad Nacional de Mar del Plata; ArgentinaFil: Vazquez, María M.. Universidad Nacional de Mar del Plata; ArgentinaFil: Graziano, Magdalena. Universidad Nacional de Mar del Plata; ArgentinaFil: Terrile, Maria Cecilia. Universidad Nacional de Mar del Plata; ArgentinaFil: Miller, Nathan D.. University Of Wisconsin-madison; Estados UnidosFil: Spalding, Edgar P.. University Of Wisconsin-madison; Estados UnidosFil: Otegui, Marisa S.. University Of Wisconsin-madison;Fil: Casalongue, Claudia. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentin

    Predicting soybean development with a simple photothermal dynamic algorithm

    Get PDF
    Predicting the occurrence of the critical period for soybean’s yield determination is important for farmers to decide on variety and sowing date with the objective to expose this period (during which yield is mainly determined) to the best environmental conditionsEEA PergaminoFil: Severini, Alan. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Sección Ecofisiología; ArgentinaFil: Álvarez Prado, S. Universidad de Buenos Aires, Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Otegui, María Elena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Ecofisiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Vega, Claudia Rosa Cecilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi; ArgentinaFil: Zuil, Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Reconquista; ArgentinaFil: Kavanová, M. Instituto Nacional de Investigación Agropecuaria (INIA). La Estanzuela; UruguayFil: Ceretta, S. Instituto Nacional de Investigación Agropecuaria (INIA). La Estanzuela; UruguayFil: Acreche, Martin Moises. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Scholz Drodowski, R.F. Instituto Paraguayo de Tecnología Agraria (IPTA). Capitan Miranda; ParaguayFil: Serrago, R.A. Universidad de Buenos Aires, Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Miralles, D.J. Universidad de Buenos Aires, Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Cell wall components and pectin esterification levels as markers of proliferation and differentiation events during pollen development and pollen embryogenesis in Capsicum annuum L.

    Get PDF
    Plant cell walls and their polymers are regulated during plant development, but the specific roles of their molecular components are still unclear, as well as the functional meaning of wall changes in different cell types and processes. In this work the in situ analysis of the distribution of different cell wall components was performed during two developmental programmes, gametophytic pollen development, which is a differentiation process, and stress-induced pollen embryogenesis, which involves proliferation followed by differentiation processes. The changes in cell wall polymers were compared with a system of plant cell proliferation and differentiation, the root apical meristem. The analysis was also carried out during the first stages of zygotic embryogenesis. Specific antibodies recognizing the major cell wall polymers, xyloglucan (XG) and the rhamnogalacturonan II (RGII) pectin domain, and antibodies against high- and low-methyl-esterified pectins were used for both dot-blot and immunolocalization with light and electron microscopy. The results showed differences in the distribution pattern of these molecular complexes, as well as in the proportion of esterified and non-esterified pectins in the two pollen developmental pathways. Highly esterified pectins were characteristics of proliferation, whereas high levels of the non-esterified pectins, XG and RGII were abundant in walls of differentiating cells. Distribution patterns similar to those of pollen embryos were found in zygotic embryos. The wall changes reported are characteristic of proliferation and differentiation events as markers of these processes that take place during pollen development and embryogenesis

    Vision, challenges and opportunities for a Plant Cell Atlas

    Get PDF
    With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.National Science Foundation 1916797 David W Ehrhardt, Kenneth D Birnbaum, Seung Yon Rhee; National Science Foundation 2052590 Seung Yon Rhe

    The Maternal-Effect Gene cellular island Encodes Aurora B Kinase and Is Essential for Furrow Formation in the Early Zebrafish Embryo

    Get PDF
    Females homozygous for a mutation in cellular island (cei) produce embryos with defects in cytokinesis during early development. Analysis of the cytoskeletal events associated with furrow formation reveal that these defects include a general delay in furrow initiation as well as a complete failure to form furrow-associated structures in distal regions of the blastodisc. A linkage mapping-based candidate gene approach, including transgenic rescue, shows that cei encodes the zebrafish Aurora B kinase homologue. Genetic complementation analysis between the cei mutation and aurB zygotic lethal mutations corroborate gene assignment and reveal a complex nature of the maternal-effect cei allele, which appears to preferentially affect a function important for cytokinesis in the early blastomeres. Surprisingly, in cei mutant embryos a short yet otherwise normal furrow forms in the center of the blastodisc. Furrow formation is absent throughout the width of the blastodisc in cei mutant embryos additionally mutant for futile cycle, which lack a spindle apparatus, showing that the residual furrow signal present in cei mutants is derived from the mitotic spindle. Our analysis suggests that partially redundant signals derived from the spindle and astral apparatus mediate furrow formation in medial and distal regions of the early embryonic blastomeres, respectively, possibly as a spatial specialization to achieve furrow formation in these large cells. In addition, our data also suggest a role for Cei/AurB function in the reorganization of the furrow-associated microtubules in both early cleavage- and somite-stage embryos. In accordance with the requirement for cei/aurB in furrow induction in the early cleavage embryo, germ plasm recruitment to the forming furrow is also affected in embryos lacking normal cei/aurB function
    corecore